Live Agent Development

Initial Setup
$ git clone https://github.com/0g-degen/tycoon.git
Cloning into 'core'...
$ cd core
$ npm install
Installing @ai-core/runtime...
Installing @ai-core/models...
Installing @ai-core/utils...
$ agent --version
AI Agent CLI v2.1.0
agent.config.js
module.exports = { name: 'smart-agent', version: '1.0.0', runtime: { type: 'nodejs', version: '18.x' }, models: [ { name: 'gpt4', provider: 'openai', config: { temperature: 0.7, maxTokens: 2048 } } ], plugins: [ '@ai-core/nlp', '@ai-core/vision', '@ai-core/learning' ], environment: { NODE_ENV: 'production', LOG_LEVEL: 'info' } }
Agent Logs
[6:36:31 AM] Rate limit reached
[6:36:33 AM] Training iteration complete
[6:36:35 AM] Processing user request...
[6:36:37 AM] Cache optimized
[6:36:39 AM] High resource usage
[6:36:41 AM] Cache optimized
[6:36:43 AM] Model prediction complete
[6:36:45 AM] Analyzing input data...
GitHub Integration
$ git clone https://github.com/0g-degen/tycoon.git
Cloning into 'core'...
$ cd core && npm install
Installing dependencies...
$ git checkout -b feature/ai-enhancement
$ git status
Modified: src/agents/core.js Modified: src/models/neural.js Added: src/plugins/advanced-nlp.js
$ git commit -am "Enhanced neural processing"
[feature/ai-enhancement 5a7f1b2] Enhanced neural processing

Implementation Examples

Neural Network Configuration

TypeScript
import { NeuralNetwork, Layer } from '@ai-core/neural'; const network = new NeuralNetwork({ layers: [ new Layer({ neurons: 128, activation: 'relu' }), new Layer({ neurons: 64, activation: 'relu' }), new Layer({ neurons: 32, activation: 'sigmoid' }) ], learningRate: 0.001, optimizer: 'adam' }); network.compile({ loss: 'categorical_crossentropy', metrics: ['accuracy'] });

Smart Agent Implementation

JavaScript
class SmartAgent extends BaseAgent { constructor(config) { super(config); this.memory = new ShortTermMemory(); this.knowledge = new KnowledgeBase(); } async process(input) { const context = await this.memory.getContext(); const knowledge = await this.knowledge.query(input); const response = await this.model.generate({ prompt: input, context, knowledge, maxTokens: 2048 }); await this.memory.store(input, response); return response; } async learn(dataset) { const trainer = new AgentTrainer(this); await trainer.train(dataset, { epochs: 10, batchSize: 32, validation: 0.2 }); } }

Plugin System

JavaScript
export class NLPPlugin extends AgentPlugin { name = 'nlp-core'; version = '1.0.0'; async analyze(text) { const tokens = await this.tokenize(text); const entities = await this.extractEntities(tokens); const sentiment = await this.analyzeSentiment(text); return { tokens, entities, sentiment, language: await this.detectLanguage(text) }; } async generateResponse(context) { const analysis = await this.analyze(context.input); return this.agent.model.generate({ ...context, analysis }); } }

Advanced AI Integration

Seamlessly connect with leading AI models and frameworks

Cloud Native

Deploy anywhere with our cloud-first architecture

Real-time Processing

Handle millions of requests with sub-millisecond latency

1M+
Downloads
50K+
Active Agents
99.9%
Uptime
01

Initialize Your Agent

npm install @ai-agent/core
Installing AI Agent dependencies...
agent init --type=advanced
✓ Agent configuration created successfully
02

Configure Environment

agent config set-environment
Environment configured successfully
agent test connection
Connection established: Ready to deploy
{
  "agent": {
    "name": "smart-agent-01",
    "version": "1.0.0",
    "type": "autonomous",
    "capabilities": [
      "natural-language",
      "decision-making",
      "learning"
    ]
  }
}
03

Deploy Your Agent

agent deploy --mode=production
Deployment successful! Agent is now live
agent monitor --watch
Monitoring agent activity...

Next Generation AI Agent Platform

Build, deploy, and scale intelligent agents with our comprehensive development platform